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Abstract. The promise of the grid is that it will enable public access and shar-
ing of immense amounts of computational and data resources among dynamic 
coalitions of individuals and institutions. However, the current grid solutions 
make several limiting assumptions that curtail their widespread adoption in 
the emerging decentralized, resource constrained, embedded, autonomic, and 
mobile (DREAM) environments: they are designed primarily for highly com-
plex scientific problems, and therefore require powerful hardware and reliable 
network connectivity; additionally, they provide no application design sup-
port to grid users (e.g., scientists). To address these limitations, we present 
GLIDE, a prototype light-weight, data-intensive middleware infrastructure 
that enables access to the robust data and computational power of the grid on 
DREAM platforms. We illustrate GLIDE on an example file sharing applica-
tion. We discuss our early experience with GLIDE and present a set of open 
research questions.

1 Introduction
One of the most exciting and promising technologies in modern computing is the grid 
[4,6]. Grid computing connects dynamic collections of individuals, institutions, and re-
sources to create virtual organizations, which support sharing, discovery, transforma-
tion, and distribution of data and computational resources. Distributed workflow, mas-
sive parallel computation, and knowledge discovery are only some of the applications 
of the grid. Grid applications involve large numbers of distributed devices executing 
large numbers of computational and data components. As such, they require techniques 
and tools for supporting their design, implementation, and dynamic evolution. 

Current grid technologies provide extensive support for describing, modelling, dis-
covering, and retrieving data and computational resources. Unfortunately, they are pre-
dominantly implemented using middleware infrastructures that leverage both heavy-
weight and computationally intensive protocols and objects [3]. As such, current grid 
software systems are not readily applicable to the domain of decentralized, resource 
constrained, embedded, autonomic, and mobile (DREAM) environments. Existing grid 
technologies also lack native support for systematic application design, implementa-
tion, and evolution. Finally, the development, deployment, and runtime adaptation sup-
port for the grid is ad-hoc: shell scripts abound, makefiles are the common construction 
and deployment tool, and adaptation is usually handled by restarting the entire system. 



Given the central role that software architectures have played in engineering large-
scale distributed systems [12], we hypothesize that their importance will only grow in 
the even more complex (grid-enabled) DREAM environments. This is corroborated by 
the preliminary results from several recent studies of software architectural issues in 
embedded, mobile, and ubiquitous systems [10,14,19]. In order for architectural models 
to be truly useful in any development setting, they must be accompanied by support for 
their implementation [8]. This is particularly important for the DREAM environments: 
these systems will be highly distributed, decentralized, mobile, and long-lived, increas-
ing the risk of architectural drift [12] unless there is a clear relationship between the ar-
chitecture and its implementation. To address these issues, several light-weight soft-
ware architecture-based solutions [10,14] supporting the design, implementation, and 
evolution of software systems in DREAM environments have recently emerged. How-
ever, these solutions are still not directly supporting the grid: they have not focused on, 
and uniformly lack facilities for, resource and data description, search, and retrieval. 

A recent focus of our work has been on addressing the limitations of the grid by 
bridging the two approaches described above. Specifically, we have drawn upon our 
previous experience in developing the OODT data grid middleware [2,8] along with our 
experience in developing the Prism-MW middleware for resource constrained devices 
[9,10], to arrive at GLIDE, a grid-based, lightweight infrastructure for data-intensive 
environments. GLIDE was built with a focus on addressing both the resource limita-
tions and lack of systematic application development support of the current grid tech-
nologies. GLIDE strives to marry the benefits of Prism-MW (architecture-based devel-
opment, efficiency, and scalability) with those of OODT (resource description, discov-
ery, and retrieval). We have performed a preliminary evaluation of GLIDE using a 
series of benchmarks, and have successfully tested it by creating a mobile media sharing 
application which allows users to share, describe and locate mp3 files on a set of dis-
tributed PDAs. While this work is still in its early stages, our initial results have been 
promising and have pointed to several avenues of future work.

The rest of this paper is organized as follows. Section 2 describes the existing grid 
middleware infrastructures and presents an overview of Prism-MW. Section 3 describes 
the design, implementation, and evaluation of GLIDE and is illustrated using an exam-
ple MP3 sharing application. The paper concludes with an overview of future work.

2 Background and Related Work
GLIDE has been inspired by a set of related projects along with our own existing work 
in three areas: computational and data grids, light-weight middleware and protocols, 
and implementation support for software architectures. In this section, we first briefly 
overview existing grid solutions, and their most obvious limitations that motivated 
GLIDE. We then describe OODT, the grid technology used by NASA and the National 
Cancer Institute, along with other representative approaches to large-scale data sharing. 
Finally, we summarize Prism-MW, a light-weight middleware platform that explicitly 
focuses on implementation-level support for software architectures in DREAM envi-
ronments; we also briefly overview a cross-section of representative light-weight mid-
dleware platforms.



2.1 Computational Grid Technologies
Globus [4,6] is an open-source middleware framework for constructing and deploying 
grid-based software systems, which has become the de facto standard grid toolkit. Glo-
bus realizes the basic goal of the grid: the establishment of virtual organizations sharing 
computational, data, metadata, and security resources. However, Globus lacks several 
development features that would ease its adoption and use across a more widespread 
family of software systems and environments. These features include (1) architecture-
based development, (2) deployment and evolution support (currently makefiles and 
shell-scripts are the standard build tools) and (3) lightweight implementation substrates.

In addition to Globus, several other grid technologies have emerged recently. Al-
chemi [1] is based on the Microsoft .NET platform and allows developers to aggregate 
the processing power of many computers into virtual computers. Alchemi is designed 
for deployment on personal computers: computation cycles are only shared when the 
computer is idle. JXTA [7] is a framework for developing distributed applications based 
on a peer-to-peer topology. Its layered architecture provides abstractions of low-level 
protocols along with services such as host discovery, data sharing, and security.

2.2 Data Grid Technologies
GLIDE is directly motivated by our own work in the area of data-grids, specifically on 
the Object Oriented Data Technology (OODT) system [2]. We have adopted an archi-
tecture-centric approach in OODT [8], in pursuit of supporting distribution, processing, 
query, discovery, and integration of heterogeneous data located in distributed data 
sources. Additionally, OODT provides methods for resource description and discovery 
based on the ISO-11179 data model standard [17], along with the Dublin Core standard 
for the specification and standardization of data elements [18].

There are several other technologies for large-scale data sharing. Grid Data Farm 
[15] project is a parallel file system created for researchers in the field of high energy 
acceleration. Its goal is to federate extremely large numbers of file systems on local PCs 
and, at the same time, to manage the file replication across those systems, thus creating 
a single global file system. Similar to OODT, the SDSC Storage Resource Broker [13] 
is a middleware that provides access to large numbers of heterogeneous data sources. 
Its query services attempt to retrieve files based on logical information rather than file 
name or location, in much the same way that OODT maintains profile data. 

2.3 Prism-MW
Prism-MW [10] is a middleware platform that provides explicit implementation-level 
support for software architectures. The key software architectural constructs are com-
ponents (units of computation within a software system), connectors (interaction facil-
ities between components such as local or remote method calls, shared variables, mes-
sage multicast, and so on), and configurations (rules governing the arrangements of 
components and connectors) [12]. The top-left diagram in Figure 1 shows the class de-
sign view of Prism-MW’s core. Brick is an abstract class that encapsulates common fea-
tures of its subclasses (Architecture, Component, and Connector). The Architecture
class records the configuration of its components and connectors, and provides facilities 
for their addition, removal, and reconnection, possibly at system runtime. A distributed 



application is implemented as a set of interacting Architecture objects, communicating 
via DistributionConnectors across process or machine boundaries. Components in an 
architecture communicate by exchanging Events, which are routed by Connectors. Fi-
nally, Prism-MW associates the IScaffold interface with every Brick. Scaffolds are used 
to schedule and dispatch events using a pool of threads in a decoupled manner. IScaffold 
also directly aids architectural self-awareness by allowing the runtime probing of a 
Brick’s behavior.

Prism-MW enables several desired features of GLIDE. First, it provides the needed 
low-level middleware services for use in DREAM environments, including decentrali-
zation, concurrency, distribution, programming language abstraction, and data marshal-
ling and unmarshalling. Second, unlike the support in current grid-based middleware 
systems (including OODT), Prism-MW enables the definition and (re)use of architec-
tural styles, thereby providing design guidelines and facilitating reuse of designs across 
families of DREAM systems. Third, Prism-DE [9], an architecture-based (re-)deploy-
ment environment that utilizes Prism-MW, can be extended to aid GLIDE users in con-
structing, deploying, and evolving grid-based DREAM systems.

A number of additional middleware technologies exist that support either architec-
tural design or mobile and resource constrained computation, but rarely both [10]. An 
example of the former is Enterprise Java Beans, a popular commercial technology for 
creating distributed Java applications. An example of the latter is XMIDDLE [16], an 
XML-based data sharing framework targeted at mobile environments.

3 Arriving at GLIDE
GLIDE is a hybrid grid middleware which combines the salient properties of Prism-
MW and core services of the grid, with the goal of extending the reach of the grid be-
yond super-computing and desktop-or-better platforms to the realm of DREAM envi-
ronments. To this end, the myriad of heterogeneous data (music files, images, science 
data, accounting documents, and so on) and computational (web services, scientific 
computing testbeds, and so on) resources made available by heavy-weight grids can 
also be made available on their mobile counterparts. Thus, mobile grids enabled by 
GLIDE have the potential to be both data-intensive, requiring the system to provide rich 
metadata describing the abundant resources (and subsequently deliver and retrieve rep-
resentatively large amounts of them), as well as computationally-intensive, focused on 
discovering and utilizing data, systems, authorization, and access privileges to enable 
complex, distributed processing and workflow.

Existing grid solutions such as Globus and OODT take a completely agnostic ap-
proach to the amount of hardware, memory, and network resources available for de-
ploying, executing, and evolving a grid-based software system. These technologies 
consider the system’s architectural design to be outside their scope. In addition, they 
also fail to provide sufficient development-level support for building, deploying, and 
evolving software applications. A solution that overcomes these limitations is needed 
to realize the widely stated vision of “data and computation everywhere”. By imple-
menting the core grid components of OODT using Prism-MW, we believe to have cre-
ated an effective prototype platform for investigating and addressing these limitations. 



3.1 GLIDE’s Design
We specialized 
Prism-MW to im-
plement the core 
components of 
GLIDE shown in 
Figure 1. Our first 
objective was to 
retain the key 
properties and 
services of Prism-
MW and provide 
basic grid services 
(such as resource 
discovery and de-
scription, search 
and retrieval) 
across dynamic 
and mobile virtual 
organizations. 
Additionally, we 
desired GLIDE to 
support architecture-based design, implementation, deployment, and evolution of data-
intensive grid applications in DREAM environments. Finally, we desired that GLIDE 
at least partially interoperate with a heavy-weight grid counterpart: because of our prior 
experience with the OODT middleware, it seemed the most appropriate choice; indeed, 
OODT directly influenced our design of the key grid services provided by GLIDE. Be-
low we describe GLIDE’s architecture in light of these objectives.

Inspired by OODT’s architecture, GLIDE’s Data Components include the Re-
source Profile, a data structure which describes the location and classification of a re-
source available within a grid-based software system. Resources include data granules 
(such as a File), data-producing software systems (including the below described profile 
servers, product servers, query servers, and so on), computation-providing software 
systems, and resource profiles themselves. Resource profiles may contain additional re-
source-describing metadata [2]. The Query Object is a data structure which contains a 
query expression. A query expression assigns values to a predefined set of data ele-
ments that describe resources of interest to the user and a collection of obtained results. 

Again, inspired by OODT’s architecture, GLIDE’s Processing Components include 
Product Servers, which are responsible for abstracting heterogeneous software interfac-
es to data sources (such as an SQL interface to a database, a File System interface to a 
set of images, an HTTP interface to a set of web pages, and so on) into a single interface 
that supports querying for retrieval of data and computational resources. Users query 
product servers using the query object data structure. Product Clients connect and send 
queries (via a query object) to product servers. A query results in either data retrieval or 
use of a remote computational resource. Profile Servers generate and deliver metadata 

Figure 1.   Architecture diagram of GLIDE showing its Prism-MW 
and OODT foundation.
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[2] in the form of resource profile data structures, which are used for making informed 
decisions regarding the type and location of resources that satisfy given criteria. Profile 
Clients connect and send queries to profile servers. After sending a query, a profile cli-
ent waits for the profile server to send back any resource profiles that satisfy the query. 
Query Servers accept query objects, and then use profile servers to determine the avail-
able data or computational resources that satisfy the user’s query. Once all the resources 
have been collected, and processing has occurred, the data and processing results are 
returned (in the form of the result list of a query object) to the originating user. Query 
Clients connect to query servers, issue queries, and retrieve query objects with populat-
ed data results. GLIDE contains one software connector. The Messaging Layer connec-
tor is a data bus which marshals resource profiles and query objects between GLIDE 
client and server components.

Each GLIDE processing component was implemented by subclassing Prism-MW’s 
ExtensibleComponent class, using the asynchronous mode of operation. Asynchronous 
interaction directly resulted in lower coupling among GLIDE’s processing components. 
For example the dependency relationships between GLIDE’s Client and Server
processing components, which existed in OODT, are removed. GLIDE’s components 
use Prism-MW’s Events to exchange messages. GLIDE data components are sent be-
tween processing components by encapsulating them as parameters in Prism-MW 
Events. Leveraging Prism-MW’s Events to send and receive different types of data en-
ables homogenous interaction among the processing components.

We found OODT’s connectors not 
to be suitable for DREAM environ-
ments because of their heavy-weight 
(they are implemented using middle-
ware such as RMI and CORBA). Fur-
thermore, they only support synchro-
nous interaction, which is difficult to ef-
fect in highly decentralized and mobile 
systems characterized by unreliable net-
work links. To this end, we have lever-
aged Prism-MW’s asynchronous con-
nectors to implement the messaging lay-
er class in GLIDE. GLIDE’s connector 
leverages Prism-MW’s port objects that 
allow easy addition or removal of TCP/
IP connections, thus allowing the sys-
tem’s topology to be adapted at runtime. 
GLIDE’s connector also implements 
event filtering such that only the requesting client receives responses from the server.

The high degree of decoupling among GLIDE messaging layer components directly 
aids easy dynamic adaptation, the lack of which is a key limitation in current grid sys-
tems. Ability to easily adapt a system’s software architecture is an important property 
missing in OODT that can be leveraged to improve the system’s functionality, scalabil-
ity, availability, latency, and so on. For example, our recent studies [10] have shown 

Figure 2.   Mobile Media Sharing Application
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that the availability and latency of software systems in DREAM environments can be 
improved significantly via dynamic adaptation.

Finally, to support interoperability of GLIDE with OODT, we provide two addi-
tional utility classes: XMLProfileReader and XMLQueryObjReader parse an XML rep-
resentation of a resource profile and query object data structure, respectively. Due to 
space limitations, we cannot provide a detailed example of the XML Profile structure 
here, but its full treatment can be found in [2]. Each string is parsed into a GLIDE data 
object. Similarly, resource profiles and query objects can be serialized into XML. Thus, 
the level of interoperability with OODT is at the level of resource description and re-
trieval, and currently resource profiles and data can be exchanged between GLIDE and 
OODT. As part of our current work, we are investigating the Web Services Resource 
Framework (WS-RF) as a means of enabling interoperability between GLIDE and Glo-
bus, which looks to use WS-RF in its latest release.

3.2 Sample Application Using GLIDE
In order to evaluate the feasibil-
ity of GLIDE, we designed and 
implemented a Mobile Media 
Sharing application (MMS), 
shown in Figure 2. MMS allows 
a user to query, search, locate, 
and retrieve MP3 resources 
across a set of mobile, distribut-
ed, resource-constrained devic-
es. Users query mobile media 
servers for MP3 files by specify-
ing values for genre and quality 
of the MP3 (described below), 
and if found, the MP3s are 
streamed asychronously to the 
requesting mobile media client. 

Figure 3 shows the overall 
distributed architecture of the 
MMS application. A mobile de-
vice can act as a server, a client, 
or both. MobileMediaServer
and MobileMediaClient corre-
spond to the parts of the applica-
tion that are running on the server and the client devices. 

MobileMediaClient contains a single component called MediaQueryGUI, which 
provides a GUI for creating MP3 queries. MP3 queries use two query parameters, 
MP3.Genre (e.g., rock) and MP3.Quality (e.g., 192 kb/s, 128 kb/s). MediaQueryGUI is 
attached to a QueryConn, which is an instance of GLIDE’s messaging layer connector 
that forwards the queries to remote servers and responses back to the clients.

Figure 3.   Mobile Media Application Architecture
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MobileMediaServer is composed of three component types: MediaQueryServer, 
MediaProductServer, and MediaProfileServer. MediaQueryServer parses the query re-
ceived from the client, retrieves the resource profiles that match the query from Medi-
aProfileServer, retrieves the mp3 file(s) in which the user was interested from the Me-
diaProductServer, and sends the MP3 file(s) back to the client.

The MMS application helps to illustrate different aspects of GLIDE: it has been de-
signed and implemented by leveraging most of GLIDE’s processing and data compo-
nents and its messaging layer connector, and has been deployed on DREAM devices. 
In the next section we evaluate GLIDE using MMS as an example.

3.3 Evaluation
In this section we evaluate GLIDE along the two dimensions outlined in the Introduc-
tion: (1) its support for architecture-based development and deployment, and (2) its 
suitability for DREAM environments. 

3.3.1 Architecture-Based Development and Deployment Support
GLIDE inherits architec-
ture-based development and 
deployment capabilities, in-
cluding style awareness, 
from Prism-MW and de-
ployment support, from 
PRISM-DE. Unlike most 
existing grid middleware so-
lutions (e.g. OODT), which 
provide support for either 
peer-to-peer or client-server 
styles, GLIDE does not im-
pose any particular (possi-
bly ill-suited) architectural 
style on the developers of a 
grid-based application. As a proof of concept, we have implemented several variations 
of the MMS application in different architectural styles including client-server, layered 
client-server, peer-to-peer, and C2 [20]. The variations of MMS leveraged existing sup-
port for these styles and were created with minimal effort. For example, changing MMS 
from client-server to peer-to-peer required addition of three components and a connec-
tor on the server side, and one component and one connector on the client side. Figure 
4 shows the peer-to-peer variant of MMS.

3.3.2 DREAM Support
Resource scarcity poses the greatest challenge to any grid solution for DREAM envi-
ronments. We have leveraged Prism-MW’s efficient implementation of architectural 
constructs [10] along with the following techniques to improve GLIDE’s performance 
and minimize the effect of the computing environment’s heterogeneity: (1) MinML 
[11], a lightweight XML parser, to parse the resource profiles and query object data 

Figure 4.   Peer-to-peer variation of the Mobile Media 
application.
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structures; (2) W3C’s Jigsaw Web Server Base64 Encoding Library [5] to compress (at 
the product server end) and uncompress (at the product client end) the exchanged data; 
(3) Filtering inside the Messaging Layer to ensure event delivery only to the interested 
parties, thus minimizing propagation of events with large data loads (e.g., MP3 files). 
Specifically, GLIDE tags outgoing request events from a client with a unique ID, which 
is later used to route the replies appropriately; and (4) Incremental data exchange via 
numbered data segments for cases when the reliability of connectivity and network 
bandwidth prevent atomic exchange of large amounts of data.

As an illustration of GLIDE’s efficiency, Table 1 shows the memory footprint of 
MobileMediaServer’s and MobileMediaClient’s implementation in GLIDE. The total 
size of the MobileMediaServer was 5.7KB and MobileMediaClient was 4.1KB, which 
is two orders of magnitude smaller than their implementation in OODT (707KB and 
280KB, respectively). The memory overhead introduced by GLIDE on the client and 
server devices was under 4KB.

4 Conclusions and Future Work
This paper has presented the motivation for and prototype implementation of a grid plat-
form for decentralized, resource constrained, embedded, autonomic, and mobile 

Table 1: Memory footprint of MobileMediaServer and MobileMediaClient in GLIDE
MobileMediaServer Java Packages # Live Objects Total Size (bytes)

Java java.lang 36 2016

glide.product 1 24

glide.profile 1 24

GLIDE’s Implementation of 
OODT components

glide.query 1 32

glide.queryparser 1 160

glide.structs 8 232

Application
mobilemedia.product.handlers 1 32

mobilemedia.profile.handlers 1 8

glide.prism.core 26 1744

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 4 216

glide.prism.handler 2 32

glide.prism.util 18 1200

Total size 5760

MobileMediaClient
Java java.lang 28 1568

GLIDE’s implementation of 
OODT components

glide.structs 7 208

Application mobilemedia 2 384

glide.prism.core 18 1304

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 3 136

glide.prism.handler 1 16

glide.prism.util 7 480

Total size 4136



(DREAM) environments. Although the results of our work to date are promising, a 
number of pertinent issues remain unexplored. Future work will focus on (1) extending 
GLIDE to provide a set of meta-level services, including monitoring of data and meta-
data; and (2) addressing the resource replication issue in grid applications. We believe 
that GLIDE will afford us an effective platform for investigating this rich research area.
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